metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Da-Bin Qin, Hai-Bin Song, Feng-Bo Xu, Qing-Shang Li and Zheng-Zhi Zhang*

State Key Laboratory Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: qindabin@eyou.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.014 Å R factor = 0.049 wR factor = 0.112 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

{1,8-Bis[2-(1-benzyl-1*H*-imidazol-3-ylmethyl- κC^2)phenoxy]-3,6-dioxaoctane- $\kappa^2 O^3$, O^6 }mercury(II) bis(hexaflourophosphate) nitromethane solvate

In the title compound, $[Hg(C_{40}H_{42}N_4O_4)](PF_6)_2 \cdot CH_3NO_2$, the geometry of the Hg coordination is distorted tetrahedral, formed by two C atoms [Hg-C = 2.076 (7) and 2.068 (7) Å] and two O atoms [Hg-O = 2.703 (5) and 2.934 (5) Å]. The crystal packing is stabilized by weak $C-H \cdot \cdot \cdot F$ and $C-H \cdot \cdot \cdot O$ interactions.

Received 15 March 2005 Accepted 29 March 2005 Online 9 September 2005

Comment

Metal complexes of carbenes based on imidazol-2-ylidene have received much attention in the past few years. *N*heterocyclic carbenes can form stable carbene complexes with a wide range of metal ions (Herrman, 2002; Bourissou *et al.*, 2000). On the other hand, crown ethers can coordinate to metal ions and form various complexes (Onan *et al.*, 1983; Rebek *et al.*, 1985; Gabriela, 1980; Rogers *et al.*, 1993; Costero *et al.*, 1996). In continuation of our work on the chemistry of *N*-heterocyclic carbene complexes (Liu *et al.*, 2003), we report here the synthesis and crystal structure of the title mercury *N*heterocyclic carbene complex, (I).

The structure of the cation of (I) is shown in Fig. 1. The X-ray analysis reveals that (I) is a 21-membered macrocyclic metal crown ether complex adopting a *trans*-conformation. The geometry of the Hg coordination is distorted tetrahedral (Table 1).

The crystal packing of (I) is stabilized by weak $C-H\cdots F$ and $C-H\cdots O$ interactions (Table 2).

Experimental

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound was prepared according to the reported procedure of Lee *et al.* (2001). Single crystals of (I) suitable for X-ray diffraction were obtained by recrystallization from diethyl ethernitromethane (Ratio 1:1).

Z = 2

 $D_x = 1.706 \text{ Mg m}^{-3}$

Cell parameters from 932

Mo $K\alpha$ radiation

reflections $\theta = 2.3 - 22.3^{\circ}$ $\mu = 3.48 \text{ mm}^{-1}$

T = 293 (2) K

 $l = -22 \rightarrow 23$

Block colourless

 $0.24 \times 0.20 \times 0.16 \; \rm mm$

Crystal data

$[Hg(C_{40}H_{42}N_4O_4)](PF_6)_2 \cdot CH_3NO_2$
$M_r = 1194.35$
Triclinic, $P\overline{1}$
a = 10.729 (3) Å
b = 12.116 (3) Å
c = 19.552 (6) Å
$\alpha = 89.721 \ (5)^{\circ}$
$\beta = 85.328 \ (6)^{\circ}$
$\gamma = 66.677 \ (4)^{\circ}$
$V = 2325.1 (11) \text{ Å}^3$
Data collection

Bruker SMART CCD area-detector 8170 independent reflections diffractometer 6318 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.034$ and a scans $\theta_{\rm max} = 25.0^{\circ}$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -12 \rightarrow 8$ $k = -14 \rightarrow 13$

$T_{\min} = 0.428, \ T_{\max} = 0.573$ 12 192 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0571P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.112$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.02	$\Delta \rho_{\rm max} = 1.06 \text{ e } \text{\AA}^{-3}$
8170 reflections	$\Delta \rho_{\rm min} = -0.91 \text{ e } \text{\AA}^{-3}$
605 parameters	Extinction correction: none
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Hg1-C24	2.068 (7)	Hg1-O3	2.934 (5)
Hg1-C1	2.076 (7)	N2-C27	1.463 (10)
Hg1-O2	2.703 (5)	C2-C3	1.342 (13)
C24-Hg1-C1	168.3 (3)	C1-N1-C2	110.2 (7)
O2-Hg1-O3	61.5 (2)	C2-N1-C4	124.0 (8)
C1-Hg1-O2	89.5 (2)	C24-N4-C34	125.9 (6)
C24-Hg1-O2	100.8 (2)	N2-C1-Hg1	130.9 (6)
C1-Hg1-O3	104.6 (2)	N1-C1-Hg1	122.4 (5)
C24-Hg1-O3	85.3 (2)	-	

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3-H3···F7 ⁱ	0.93	2.32	3.233 (11)	166
$C3-H3\cdots F11^{i}$	0.93	2.47	3.217 (10)	137
C20−H20···O6 ⁱⁱ	0.93	2.55	3.400 (11)	152
$C23-H23A\cdots F12^{ii}$	0.97	2.52	3.444 (11)	159
C29-H29···F12 ⁱⁱ	0.93	2.53	3.401 (12)	156
$C41 - H41B \cdots F1^{ii}$	0.96	2.51	3.039 (13)	114

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.

H atoms were placed in calculated positions, with C-H = 0.93, 0.96 or 0.97 Å, and included in the final cycles of refinement in a riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest peak is located at (0.2951, 0.1929, 0.2341).

Figure 1

The cation of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the National Natural Science Foundation of China (grant No. 20472036).

References

- Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. (2000). Chem. Rev. 100 39-92
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin USA
- Costero, A. M., Andreu, C., Monrabal, E., Tortajada, A., Ochando, L. E. & Amigó, J. M. (1996). Tetrahedron, 52, 12499-12508.
- Weber, G. (1980). Acta Cryst. B36, 2779-2781.
- Herrman, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
- Lee, K.-M., Chen, J. C. C. & Lin, I. J. B. (2001). J. Organomet. Chem. 617-618, 364-375.
- Liu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309-314.
- Onan, K., Rebek, J., Costello, T. & Marshall, L. (1983). J. Am. Chem. Soc. 105, 6759-6760.
- Rebek, J., Costello, T., Marshall, L., Wattley, R., Gadwood, R. C. & Onan, K. (1985). J. Am. Chem. Soc. 107, 7481-7487.

Rogers, R. D., Bond., A. H. & Wolff, J. L. (1993). J. Coord. Chem. 29, 187-207. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.